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ABSTRACT

In the numerical modeling of the crack propagation in dynamic fracture using stationary elements.

a discrete and sudden release of node at the crack tip creates spurious oscillation in the kinetic and

strain energy values. In order to reduce the oscillation, a moving node element was utilized. This

element can model a continuous crack tip movement more closely. The moving node element is

compatible with surrounding regular isoparametric elements and no remeshing is required during the

crack propagation. In addition, two different central difference schemes were compared. and their

results were almost the same.
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I. INTRODUCTION

Inherent flaws in engineering materials can lead to a

catastrophic failure due to unstable crack propagation. By

eliminating the conditions and/or manufacturing defects

(i.e., overloading, fabrication) which can lead to crack

initiation, catastrophic failure can be prevented. In many

structural components absolute prevention can not always be

guaranteed. For such structures, catastrophic failure can be

minimized by a crack arrest system. To ensure the proper

incorporation of a crack arrest system, the effects of a

propagating crack must be understood. These effects can be

understood through the study of dynamic fracture mechanics.

Dynamic fracture mechanics can be applied to any problem

involving a body ccntaining a crack in which inertia forces

play an important role. In practice two kinds of dynamic

fracture problems have received the most attention [Ref. 1].

These are:

1. bodies with stationary cracks that are subjected to a

rapidly varying load, and

2. bodies under fixed or slow varying loading that

contain rapidly moving cracks.
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Dynamic crack propagation can be divided into two

categories: crack initiation and crack propagation. A third

category sometimes used is crack arrest. There are different

opinions concerning crack arrest. Kanninen [Ref. 2] asserted

that crack arrest is not a separate category of dynamic crack

propagation, but is the termination phase of crack

propagation.

Dynamic fracture mechanics problems have focused mainly on

bodies that contain a rapidly moving crack. As such, severaJ

numerical dynamic fracture analyses for the opening mode crack

propagation have been studied. Kobayashi, et al. [Ref. 3]

analyzed two fracturing Homalite-100 plates by dynamic finite

element and dynamic photoelastic analyses. These analyses used

the process of discrete crack-tip advances. The restraining

nodal force was suddenly released when the crack-tip reached

the next adjacent node. As indicated by Malluck and King [Ref.

41, the above procedure has inherent problems: the sudden

release of a node can induce unwanted high-frequency of

motions; and the crack tip location within the nodal spacing

can not be determined. To reduce this problem Malluck and King

incorporated a mechanism for energy release in their finite

element analysis. The nodal reaction of the crack tip was

gradually reduced as the crack tip propagated (in the

continuum view) from one node to the next node.

Kobayashi, et al. (Ref. 5] were aware of the considerable

oscillations in the calculated dynamic energy release rate.
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They believed the oscillation was due to the sudden release of

the crack tip (finite element nodes). To reduce these effects

a nodal force release mechanism was incorporated to depict a

more gradual transit of the crack tip between adjacent nodes.

However, the assumed nodal release force is a somehow

arbitrary choice.

As indicated in [Ref. 6], computational procedures for

crack propagation problems can be grouped into two types:

stationary mesh procedure and moving mesh procedure. The above

analyses may be categorized as a stationary mesh procedure. To

predict the continuing propagation of a crack in a discrete

model closely, moving mesh procedures were introduced.

Nishioka and Atluri [Ref. 7] analyzed the propagating crac,.

using a moving singular element in which the geometry of the

element was altered as the crack propagated; thereby,

requiring remeshing of the elements after an elapse period of

time. If the element is distorted severely the accuracy may be

degraded as indicated in [Ref. 8]; therefore, it was critical

that remeshing occurred at the appropriate time. Kwon ard Akin

[Ref. 9] developed a procedure for modeling the crack

propagation problem using a node moving along the edge of the

element. In this procedure the element is not distorted;

therefore, remeshing is not required. A modification of the

latter procedure was incorporated into this study.

The main objective of this study is to examine different

numerical modeling techniques for studying dynamic crack
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propagation. The main emphasis is placed on reducing the

spurious oscillation in the calculated energy terms which

resulted from the stationary node procedure, Figure la. An

eight noded regular element (Figure Ib) was used in the

procedure. To reduce the spurious oscillation a moving node

procedure (Figure 2a) using a movinc node (Figure 2b) was

incorporated into the finite element model.

The study focused on the analysis of a rapidly propagating

crack of opening mode in a linearly elastic isotropic body.

Inertia was formulated into a diagonal mass matrix and the

numerical time integration was accomplished using the two

different central difference method. Crack propagation was

simulated by the sequential release (at prescribe time

intervals) of the nodes along the edge of the finite element

model. Both stationary and moving node techniques were used to

model the crack tip movement. Crack tip stress singularity was

not represented in the model. From these method, crack opening

displacement, work, strain energy, and kinetic energy were

calculated and a comparative analysis was conducted from the

results.
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Figure 1. (a) Modeling of a propagating crack using a
stationary node element. (b) An eight noded regular
element.
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Figure 2. (a) Modeling of a crack propagating using a
moving node element. (b) An eight noded moving node
element.
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II. MATHEMATICAL DERIVATION

A. GOVERNING EQUATION

In an elastodynamic problem of a continuous isotropic

body, certain governing equations must be satisfied at all

interior points of the body. For two-dimensional problems, the

equations of motion are:

a' (9ua2)
ax ay t+Fx-p-=1
a 9au av 32 V---P *F-p-=0ax+ay atFY at2

where ax, ay, and T are the normal stresses in the x and y

direction and the shear stress, respectively. Fx and FY are

the body forces in the x and y direction, respectively. p is

the density of the material. A is the damping coefficient for

the viscous damping. u and v are the displacements in the x

and y direction, respectively. And t denotes the time.

The constitutive equation (stress-strain relations) is

{a)=[D] {e} (2)

where {(} represents the stress vector and {e} the strain

vector, as shown below:
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{o} a[d y "£ I (3)

and [D] is a symmetric 3x3 material property matrix. For an

isotropic material, [D] is

lv 0
D] E v1 0 (4)[DV (l-v 2 ) 0 (4)

2

for the plane stress condition and

1 V 01-V

[D]- E(l-v) v 0 (5)
(l+v) (1-2V) 1-V

0 0 12v
2 (l-v)

for the plane strain condition.

The kinematic equation (strain-displacement relation) is

au
ax
aE v (6)

~ay
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B. BOUNDARY CONDITIONS

In addition to satisfying the 9overning equations, the

prescribed conditions on stress and/or displacement must be

satisfied on the boundary surface of the body. These

conditions are classified as below. The essential boundary

conditions are

u=U (7)
v= V

and the natural boundary conditions are

X= nx+AxYny (8)

where ox and 0y are the traction in the x and y direction,

respectively. And nX and ny are the components of the outward

directed unit normal vector on the boundary surface in the x

and y direction, respectively. Boundary value problems, in

general, consist of a combination of the two types described

above.

To transform the differential equations to matrix

equations, apply the Galerkin method of weighted residual to

the equations of motion (1):

9



1:fUU 4 u+XPU''d =0Sfa ax av at at ,(0

aox av a2 O

where w, and W2 are test (weighing) functions and Q is the

domain of the given problem. Because Galerkin's method yields

a non-symmetric matrix equation, apply the weak formulation to

equation (9) to get a symmetric matrix. The results yield a

symmetric equation because the governing equation is self-

adjoint. Integrating by parts the stress terms of equation (9)

yields:

, ax, a3, atuF 2,) +(10

ax at 2 8 C a dU

where r is the boundary surface of the domain Q. Rewriting

equation (10) into matrix formr

ax ay +X (JI 0 at2 + 0 3tU)dO-fa 0 aw2 802  Y (A)[ ~ 21a2VIL0 A o 2 1 aVI
8y xl a tY a2J (at

fr i} 2j7r+f (A)21~} d

10



where the first term becomes the stiffness matrix, the second

term becomes mass matrix, the third term becomes the damping

matrix, the fourth term becomes the load vector, and the fifth

term becomes the body force vector. Substituting the

constitutive equation (2) into (11) gives

fa.. 0 aOy)1 E11a
( ax a,,, [D] ii LP W 0 11 at: d w:

o ay ax j 0-J (2 a2v 0 (12)
ay ax~ 8t2a

fr ) Jj f1r(A) 1 0{;do

Substituting the kinematic equation (6) into (12) gives

au,
aw. aw -ax a2u au(9 0• ay_ 1°• av +'1 (A) 0 "o ••]O

c ax a awi 0~ W C] a2 V a 01)d at4)dQ=
0a 1 D y Pý 2J 01'ItI [ 1-t (13)ay ax / au. avj aJ ! (1:3)

agy aX]

The matrices and the load vector are computed on the element

level by discretization of the domain 9 and the boundary

surface r:

(14)
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where ge and re are the element domain and element boundary

surface, respectively.

C. MASS MATRIX

The mass matrix comes from

2

(> 1 ý1 at2 1

In this study eight noded isoparametric elements were used for

the finite element mesh. The finite element derivation for

the eight noded element is shown in detail below. The element

is shown in Figure lb.

From variable interpolation,

u =Hý51U "2 u 2 +H3 u3 +•4 u 4 +H5 u 5 +H6 u6 S I- 7US7 H8U8  (16)

v=H1 V+ ÷ H2 V 2 +-H 3 V3 +H4 v4 +H5 V5 +-H6 V6 +H7 V-7 + H8 V8

where ui and vi are the displacements in the x and y direction

of the respective node and Hi are the shape functions at the

respective node.

For the regular eight noded isoparametric element

(Ref. 10] they are

12



HIý1 !1-s)(1-C)(1-s+t)
1

1 
11s) (--C) (s-C-H)

H= 1 (l-s) (l-t) (1-s H-l 1

H 4 2 528 (- )(CS 1

4 (17)
H- __1 (i-t:) (1-s:)

2

-2(1.s) (1)--H -)

22I 2

1 2
H8- (1-s) (1•t)

and for the eight noded isoparametric moving node element

(Ref. 9] they are

/H1=-! (1-S) (1-0) - l"H,--lH8

44 2~ 28()

H2 =: (1 ((i-s ) (-t) 1- C)-!

2 2l-s2

H3=! (1+s) (1+t) -- !H, C2)

H4 = 1 (1 -S) (1 + t) -1 7- 1 H87
4 1 2 2(18)

2(1-s) (1-s2 )

He = (1-s) (1-t 2 )

S2

Since the shape functions are independent the time, the

acceleration terms are

13



C)2UUIt, ,HI 0 H, o H 0 HH 5 0 H, 0 H, o (19)
H.Iavj 0 H, 0 Hx 0H, 0H, 0 H, oH, oH, oR

Applying Galerkin's method

wo 0 H, 0 HoH, o H o H, 0 H 5 , o H,0H, (20)
H, 0 ,0H ,0H.0H ,0H

Substituting equations (19) and (20) into (15) gives

H1 0

0 HI

H2 0

0 H2 , 0 H2 0.... H. 0 ]dQ, (21)

* .10 H1• 0 H.... 0oH

H8 0 Tý

0 H8

Since the shape functions are expressed in the natural

coordinates, it is necessary to carry out the integration in

equation (21) in the natural coordinate, using the

relationship

dQ=dxdy=det [J]j dsdt (22)

14



where [J] is the Jacobian matrix given as

ýax avr
3S as (23)
8X av
.a E.

Substituting equation (22) into (21) yields

HI H,. 0 H,-H! 0 .... HIH8  0 U 1
o H, H 0 HH 2 .... 0 H, HFe v,

H, H, 0 H!H- 0 .... H2 H. 0 u_

0 H2H1 0 H2 H2 .... 0 H2 4!8

- -' H 3HI 0 H3H2  0 H3H8 deH[ ]dsdt. (24)

f-J-' 0 H3 H1 0 H3 H2 ... 0 H3!-H8
U.,

"H.H! 0 H! ". 0 .... He!He 0•

0 He!H1 0 H8H! .... 0 H8H8. 4

Since the shape functions are an explicit function of s

and t, a numerical method is used to evaluate equation (24).

The two-point Gaussian quadrature formula is used to carry out

the integration. The result is a symmetric consistent mass

matrix.

For this study the consistent mass matrix was diagonalized

by following procedure [Ref. ill:

a. Calculate the diagonal coefficients of the consistent

mass matrix.

15



b. Determine the total mass of the element, m.

c. Add the diagonal coefficients, mii, associated with

translation only to obtain a number, e.

d. Multiply the diagonal coefficients, mil, by m/e.

e. Set all the off-diagonal terms to zeros.

D. DAMPING MATRIX

The damping matrix is given byau
(A), 0 a t , A I v (2 5 )

Since the shape functions are independent of time,

U'

aua t 'H H2 0, o OH OH, OH 0 Ho 0 oH, (26)
av H, 0 H2 0 H3 0 H4 0 Ho 0 H6 0 H, 0 Ha

Substituting equations (20), (22) and (26) into (25) and

applying the two-point Gaussian formula gives a symmetric

consistent damping matrix.

E. STIFFNESS MATRIX

The stiffness matrix is given as

16



- x a y; [D] 3 do( 7ax (27)

; 3 xy 3xj

Rewriting the kinematic equation in terms of nodal

displacements gives

au
ox a a~

dy 0 a a
au av Ty 7x

(28)dH1  aH2 Hxu

ax, 0 a2 0 0 a7 0 ~ 0 V. (8ao x ax oax ov,

0 aH3 o aF2  0 aH7 o aFf8
ay av ay ay

aH1 aH, aH, aH2  a7 OH7 allH aHH8  u8
ay dx ay ax ay- x dy ax ve

where

al -A aH-i AaH
-3- -s 12+2 a(
aHi = aHA aHi (29A)

and Aij are the components of the inverse of th2 Jacobian

matrix. The matrix in equation (28) is called the (B] matrix

17



and the vector is called the displacement vector {d}. From

Galerkin's method on the first matrix in equation (27) gives

a.0
ax0 =B (30)

0 ay axJ

Substituting equations (29) and (30) into (28) gives

f. [BI 7[m] [] dQ {d} (31)

The stiffness matrix is given as

[Ke] =.[B] [D] [B] dQ (32)

Substituting equation (22) into (32) gives

[Ke] =f [B T [D] [B det [Jl dsd t (33)

The two-point Gaussian quadrature formula is used to carry out

the integration.

F. BODY FORCE VECTOR

The body force vector is given as

18



"W10 r d(I (34)f c:J { F•C

Substituting equations (20) and (22) into (34) gives

1frI , 0 H2  0 .... H- 0 H8  0 lTF35xdet [J]dsdt 35

0H H 2 .... o H? 0 HSJ jFYJ

The two-point Gaussian quadrature formula is used to carry out

the integration.

G. LOAD VECTOR

The load vector is given by

f x (A) dr (36)

where r is the boundary surface of the domain Q. If there is

no traction

xW •xC"lr=o (37)

If there is traction, substituting equation (20) into (36)

gives

19



{P}: 0 77 a T3 01 L (38)

where {P} is the external load vector along edge 4-7-3 (Figure

3), h is the element thickness and overbars indicate the shape

functions Hi are evaluated at t=1 (the natural coordinate).

Integrating equation (38) yields

{P1 = -4hL-1 .1 (39){P Y 6 36

Fraction of the total force is shown in Figure 3.

Y T Qy
Sx~Tx 3 0 x4 X j T 3 O

Ty- Tx - 2/3
S Qy" QOx 1/6 6

o 2

L

Figure 3. Fraction of total
force on the element
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From the procedural derivation above, the equation of

motion is finally rewritten as

[M( {d}1 [C] {d} -[K] {d} ={R} (40)

where {R}={P}+{F}. This equation applies to any dynamic

problem in which the finite element method is used.

H. TRANSIENT ANALYSIS

In dynamic problems the displacements, velocities,

accelerations, strains, stresses, and loads are time

dependent. Therefore, a time integration scheme is required.

The equation of motion at time t is

[M] 1+} ÷[C] {(d}C[K] {d} t ={R}t  (41)

This study examined two different forms of the central

difference method:

The first method is as summarized below [Ref. 12];

A. Initial Calculations

1. Solve for [M], [C], and [K]

2. {d}t = [M] '[{R}° - [Cl {d} 0 - [K] {d} 0].

where {d} 0 and {d}0 are the initial conditions.

3. {d}) - {d} 0 - (At){d}0 + a 3 {a} 0 .

4. [M] = a 0 [M] + al[C].

21



B. For each time step

1. {R} = {R}t ([K] a 2 [M]) {u}I (a 0 [MJ - a, [C]) {dltAt.

2. {d}t+At =

3. {d}t = ao[{d}t+At 2{d}t + {d}t-At]

4. {d}t = al[{d}t+At {d}t-At]

where a0 = 1/At 2; a, = l/2At; a 2 = 2a 0 ; a3 = 1/a,

The sacond form "summed form" [Ref. 13] is as follows:

A. For each time step

1. {a}At+1 = [M] -1 (RAt+1 - [K] {d}At+1).

2. {(}At+3/2 = }At+1/2 + AtAt+1{a}At+1.

3. {d}At+2 = {d}At+l + AtAt+3/2{d}At+3/2

The explicit central difference scheme is conditionally

stable. The time step At must be controlled from the smallest

period of the system. As indicated in [Ref. 14], a safe

limiting value is given by

At=0.45L" [P(l+v)E(1- 2 v) ]1/2 (42)

where L' is the sr.allest distance between adjacent nodes of

any element used :-rid E and v are the elastic modulus and

poisson's ratio, respectively. This safe limiting value was

used as a criteria to ensure stability.

22



I. DYNAMIC FRACTURE ANALYSIS

From elasticity the stresses near a crack tip for the

opening mode are:

GX- K _cos± i-sin-sin
2v 2 2

G=Kcos- a !+sin-sin 30 ~ (43)
2-r 2 2 2

K Isin ecos-ecos 38
ý2- , 2 2 2)

where ox and a y are the tensile stresses in the x and y

direction, respectively, rT• is the shear stress, r is the

radial distance from the crack tip, 0 is the angle from the

crack plane, and K is the stress intensity factor. The stress

intensity factor provides a convenient parameter of the stress

distribution around a flaw. If K is equal to or exceeds a

critical value (fracture toughness, Kc) the crack becomes

unstable. Kc is a material property. [Ref. 15]

In the dynamic generalization of linear elastic fracture

mechanics (LEFM), Kc has two parts. For the initiation of

crack growth

K(a,o,t) = Kd(6) (44)

where a represents the crack length, a is the applied stress,

t is time, and 0 is the loading rate. Similarly, for a

propagation crack

23



K(a, a, t) = KO(A) (45)

where & denotes the crack speed. [Ref. 2]

An alternative criterion for determining the motion of a

crack is,

G(a,a, t) = R(J) (46)

where R is the energy dissipation rate required for crack

growth and G is the dynamic energy release rate given by,

l{dW dU db I -- a 9daJ (47)

1 1 ddW dU dT
bEcl- d t -dt d qdJ

where U is the strain energy, T is the kinetic energy, W is

the work done on the structure by external loads, a is the

crack length, and b is the plate thickness at the crack tip.

The dynamic energy release rate and the dynamic stress

intensity factor are connected through Freund's formula,

K= EG A (48)

where G is the dynamic energy release rate, E is Young's

modulus, P is Poisson's ratio, and A is a function that is

dependent on crack speed. A is given as
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A= - (49)

(1,A 
C, 

41~ 
j) 2 A)2]

(l-0) 4 i--- i- 2

where C1 and C2 are the longitudinal and shear wave speeds.

(Ref. 21

The wave speeds are given by [Ref. 161,

where X and A are Lam6's constants, and

1
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III. RESULTS AND DISCUSSION

A. PROBLEM STATEMENT

The main objective is how to best approximate the behavior

of a continuous propagating crack using a discrete finite

element model. The model was composed of a uniform mesh of

eight noded isoparametric elements. In the first model the

nodes were stationary. To approximate the movement of the

crack, the nodal restraints were suddenly released at given

time intervals (time required for the crack to travel a nodal

spacing in the continuous movement). As will be shown, this

resulted in spurious oscillation in the energy terms. To

reduce the oscillation due to discrete jumps of the crack

movement, as simulated by the model, a moving node element was

employed in the second model.

Each of the analysis was based upon the plane-strain

conditions of a centered cracked plate of homogeneous

isotropic elastic material. The plate deformed under the

action of an applied time-independent (constant) traction. The

applied load was normal to the crack plane, mode I

configuration. The mass matrix was diagonalized and the

numerical time integration was accomplished by two different
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forms of the central difference method. A comparative study

was conducted of the two forms.

B. VERIFICATION EXAMPLES

The developed finite element analysis code was verified by

analyzing a problem with a known solution. The problem

considered is governed by the wave equation. A long uniform

rod with one end fixed and the other end free was -xamined.

The free end was subjected to an applied axial force which was

released at time zero. Applying Newton's second law and for a

constant area multiply by Young's modulus (AE) the equation of

motion simplified to the wave equation

CU) 2a2u (51)
1t2  ax2

where c 2 = E/p and u is the axial displacement of an element

of the rod. By the method of separation of variables, the

analytical solution is expressed as

u(x,C)- 8FL E- (-l)n sin (2n+l)rxcos (2n+l) nct (52)
n 2AE -n= (2n+l) 2  2L 2L

As shown in Figure 4, the numerical result was reasonably

accurate. To verify the accuracy of the second model (moving

node), it was compared to the stationary model when node five

was at the center edge of the element. For this case the

results should be and were the same.
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As another comparative check of the accuracy of the

developed methods, the results of the crack opening

displacement (COD) was compared against the analytical

solution as derived by Broberg [Ref. 17] . To obtain the

mathematical description of a two-dimensional crack, Broberg

made the foli-wing assumption [Ref. 17]:

1. A two-dimensional crack can propagate in one plane only.

2. The material is homogeneous and isotropic with regard to

fracturing characteristics and stress-strain relations.

3. The material obeys Hooke's law and is perfectly brittle.

4. The surface energy is zero.

5. The crack propagates with a maximum velocity from the

start.

Broberg's analytical solution applies to an infinite medium

with the above characteristics. These assumptions were

incorporated into this study. The comparison between

analytical and numerical solutions are shown later.

C. NUMERICAL TIME INTEGRATION

An explicit procedure based on the central difference

method wc3 incorporated into this study. The two forms of the

method are as outlined in Chapter II. The latter is the

"summed form" (Ref. 131. From a computational consideration,

the "summed form" has an advantage. For a damped structure,

the "summed form" only requires the mass matrix be

diagonalized to simplify the computation; whereas, the former
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requires the diagonalization of the mass and damping matrix

for simplification. To date no supporting argument or test

cases exist which justifies the use of a diagonal damping

matrix.

During the study it was noted that the first central

difference method was very sensitive to computational round

off errors. As the time increment decreased, the central

difference did not converge while running the model in single

precision. The model was ran at double precision (minimizing

round off error) to achieve convergence. On the other hand,

the "summed form" converged during single precision runs.

Comparison of the convergent results revealed no difference

between the two central difference techniques. The "summed

form" simplifies the computation, and as a result, it saves

time and money.

An important consideration when using the central

difference method is the time step. Because the central

difference method is conditionally stable, the time step must

be less than the critical time step to ensure stability. The

critical time step is defined as the time required for an

acoustic wave to transverse the smallest element of the system

[Ref. 11] . A time step less than the critical time step

guarantees the stability of the solution. Stability meaning

that the displacement does not grow without limit. As

indicated in [Ref. il], the practical limit on At is

approximately 25% less than 2/wmax. As seen in this study,
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decreasing the time step size considerably below the

approximate formula for Atcr, equation (42'), resulted in no

change.

In the second analysis, the distance the moving node can

travel is limited by 4. 3 is the fractional distance of the

element length. It represents the minimum distance the moving

node should be from the corner node, Figure 5. Because

convergence had occurred, decreasing At for a constant beta

resulted in no change in the sclutions. The minimum distance

from the corner node, 3, is dependent on At for relatively

large time step size. As shown in Figure 6, decreasing /3 for

a constant At introduced higher frequencies with similar

magnitudes. If the moving node propagated within the minimum

allowable distance, the system became unstable. Exceptionally

high frequencies and amplitudes resulted, Figure 7.

As shown in the Tdble 1, further decreasing the time steps

resulted in a constant 0.

Table 1. Fractional minimum distance of
the moving mid-node from the end node

NSTEP 10 25 50 i 100

beta (/) 1/5 1/10 1/10 1/10
*Nstep is the number of time steps for
the crack to advance one half the element
length.
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D. STUDY ON MASS AND STIFFNESS MATRICES

As indicated in [Ref. il], test cases have shown that the

diagonal matrix, using the procedure outlined in Chapter II,

gives greater accuracy than a consistent mass matrix. A

diagonal mass matrix also requires less storage space than a

consistent mass matrix and simplifies the computation of the

central difference scheme.

For the regular eight noded isoparametric element, the

concentrated mass at the corner nodes are one-eight that of

the mid-nodes. For the moving nodal case, the diagonalized

mass matrix from the moving node element caused unstable

(oscillatory) conditions. Because of the close proximity of
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moving node five to node one, the diagonal mass matrix

procedure resulted in the majority of the mass concentrated at

nodes five and one. As node five moved across the edge of the

element toward the center, the nodal point mass approached

that of the regular element. Due to the unstable conditions

resulting from the diagonal mass procedure for the moving node

element, the diagonal mass matrix was calculated with the

moving node at the center of the element boundary edge. The

computed diagonal mass matrix remained constant throughout the

analysis.

For the eight noded regular element the element nodal

stiffness remained constant. On the other hand, for the eight

noded moving node element the nodal stiffness of nodes one,

two, and five varied as node five moved along the edge of the

element. Node five cared the higher stiffness. The remaining

nodes (three, four, six, seven, eight) were equivalent to the

regular element.

E. COMPARISONS OF ENERGY TERMS

In order to make a direct comparison between the use of a

stationary element and a transition element, the generated

results were compared with Broberg's problem. The finite

element breakdown for Broberg's problem was as depicted by

Kobayashi et al. [Ref. 5] and as shown in Figure 8.

Figure 9 shows the crack opening displacement during crack

propagation. The two finite element results are compared to
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the analytical solution as solved by Broberg. Except for some

positions, the results were relatively similar. No comparative

conclusion can be drawn from the results. Although their close

comparison to the analytical solution indicates the

reasonableness of the model.

Figure 10 shows the crack opening displacement at x = 0.

From this result, it is seen that the use of the moving node

element approximates a propagating crack more closely than the

stationary element.

Figure 12 shows the work on the plate during crack

propagation. There is a similar trend between the stationary

element and the moving node element with the exception that

there is a slight increase in the work for the moving node

element.

Figure 12 shows the calculated strain energy during crack

growth. The stationary element produces spurious oscillation.

The oscillation is caused by the instant release of the crack

tip during the process of discrete crack tip advances [Ref 5]

As shown in Figure 12a, there was a rapid build up in the

strain energy until the node was released. Upon nodal release

there was a rap.d reduction in the strain energy followed by

a rapid increase until the next nodal release. The oscillation

amplitude of the strain energy increased during crack

propagation. Employing a moving node element made the crack

tip movement more continuous. As a result, the oscillation

amplitude of the strain energy was much reduced, Figure 12b.
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Figure 13 shows the calculated kinetic energy during crack

growth. The delayed nodal release, caused by the stationary

element, resulted in a rapid decrease in the kinetic energy

prior to the release of the node, then an rapid increase

followed by a rapid reduction until the next nodal release.

This trend was a reversal of that seen for strain energy. The

oscillation amplitude of the kinetic energy increased during

crack growth as it did for the strain energy. Employing a

moving node element reduced the oscillation amplitude because

the moving node better represents a moving crack tip.

Although not necessary since the crack had already passed,

if variable interpolation was used to move the middle node

(node five) back to the center position, there was an increase

in the oscillation of the results. The increase in oscillation

is probably due to the abrupt change in the nodal stiffness

when bringing node five back to its center location. As the

crack propagated, there was a gradual shift in the stiffness

of node five.

In an elastic medium there are only two types of waves

that propagate through a solid that is unbounded [Ref. 161.

These are dilatational and distortional waves. If the solid

has a free surface, Rayleigh surface waves may also propagate.

Rapid reduction in stress occurred upon nodal release. Due to

this rapid reduction, unloading waves were generated at the

crack tip. As the wave propagated through the medium, strain

energy decreased and kinetic energy increased.
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If the body is bounded, elastic waves reflect and refract

off the boundaries back toward the crack tip as loading waves.

The loading wave expands the body; thereby, amplifying the

strain caused by the tension load. This result of an increase

in strain energy is seen in Figure 13a.
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IV. CONCLUSIONS AND RECOMMENDATIONS

This study focused on the finite element modeling of a

rapidly propagatinq crack. Two methods were employed in this

study. The first procedure, adopting stationary elements,

resulted in spurious oscillation of the energy terms. For this

procedure the propagating crack was represented by discrete

jumps at given time intervals. To more closely approximate the

prcdagating crack, a moving node procedure was employed in the

model. As shown in the previous chapter, the moving node

procedure reduced the spurious oscillation of the energy

terms. Unlike the moving mesh procedure, no remeshing is

required for this procedure.

From the comparison of the two procedures mentioned above,

the following observations were noted:

1. The two forms of the central difference methods yield

almost the same results. As a result, the "summed form" was

preferred due to its simplicity and efficiency in

computational time.

2. The range which the moving node, which represents the crack

tip, can propagate along the edge of the element was a

function of the time step size for relatively large time step

sizes. However, for reduced time step sizes, the range was the

same.
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3. For the moving node procedure, diagonalizing the mass at

each increment of movement resu.'ted in sporadic results. When

node five is close to the corner nodes the majority of the

concentrated element mass was located at node five and the

respective corner node it was close to.

This study did not account for the singularity in the

crack tip. To represent the stress field near the crack tip

more accurately, it is recommended that singular element, as

derived in [Ref. 9], be incorporated into the model.
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